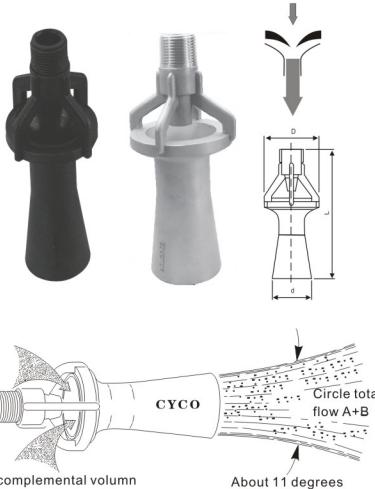


K2 Mixing Fluid Nozzle

material characteristic


- Constructed of carbon fiber-glass-reinforced Polypropylene of SS316.
- maximum operation temperature 120°C, 300°C for stainless steel.
- Corrosion resistance and aging resistance.

Functions

- provides a homogeneous fluid mix without the use of air agitation precluding oxidative decomposition of air agitation of the solutions.
- improves circulation of the turbulent flow and optimized mixture of the solutions.
- assures uniform mixture of solutions and improve product quality.

Design features

- Designed on the basis of the berboulli theory, fluid under pressure is pumped into the nozzle through its large flow opening, as the liquid exits the nozzle at high velocity, it draws surrounding solution through the nozzle's "flow-through" chamber that's designed to eliminate internal material build-up. The additional liquid flow mixes with the pumped solution. That is, the nozzle can pull in 4 gallons of surrounding solution for every 1 gallon pumped through the nozzle.

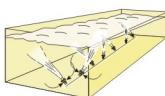
Performance Data

Inlet conn NPT or BSPT(M)	large acrage flow rate	hydraulic pressure input						
		0.5 Bar	1 Bar	1.5 Bar	2 Bar	2.5 Bar	3 Bar	3.5 Bar
1/4	Inlet flow rate(L/min)	11.3	16.0	19.5	23	25	28	30
3/8		29	42	51	59	65	70	77
3/4		43	64	74	85	97	106	116
1-1/2		106	151	184	215	243	259	288
1/4	complemental volumn(L/min)	42	59	72	84	93	102	110
3/8		116	168	204	236	260	280	308
3/4		172	256	298	340	388	424	464
1-1/2		424	604	736	860	972	1036	1152
1/4	Circle total flow (L/min)	53.3	75	91.5	107	118	130	140
3/8		145	210	255	295	325	350	385
3/4		215	320	370	425	485	530	580
1-1/2		530	755	920	1075	1215	1295	1440
1/4	A+B	0.91	1.5	2.1	2.6	3.0	3.7	4.3
3/8		1.2	1.8	2.4	3.0	3.7	4.3	4.9
3/4		1.5	2.4	3.4	4.3	5.2	6.1	7.3
1-1/2		2.3	3.7	4.9	6.1	7.3	8.8	10.4

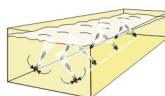
K2 Series

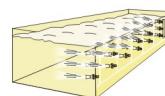
Model	Inlet conn (Inch)	L(mm)	D(mm)	D(mm)
K2 40	1/4	70	30	23
K2 60	3/8	115	50	38
K2 90	1/2	115	50	38
K2 130	3/4	165	65	50

Ordering info


K2 40 - 3/8 - PP

↓ ↓ ↓
Model Entrance Material
size size


In large solution tank, annular distribution of the mix fluid nozzle is more effective than mono-distribution, and horizontal arrangement is the lowest efficiency. The mixing fluid nozzle shoud be installed at the bottom of the tank in order to get to a maximum circulation rate. Below are some of the typical distribution of the mixing fluid nozzle.


Rectangle or square
stirred tank

Stratification
stirred tank

Spare parts
rinse bath

Grid structured
plating bath